Speeding Up Nek5000 with Autotuning and Specialization

Jaewook Shin," Mary W. Hall,* Jacqueline Chame,?
Chun Chen,* Paul F. Fischer,' Paul D. Hovland*

t {jaewook, fischer,hovland}@mcs.anl.gov i {mhall, chunchen}@cs.utah.edu

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439
§

School of Computing
University of Utah
Salt Lake City, UT 84112

jchame@isi.edu

Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292

ABSTRACT

Autotuning technology has emerged recently as a systematic pro-
cess for evaluating alternative implementations of a computation, in
order to select the best-performing solution for a particular archi-
tecture. Specialization optimizes code customized to a particular
class of input data set. In this paper, we demonstrate how compiler-
based autotuning that incorporates specialization for expected data
set sizes of key computations can be used to speed up Nek5000,
a spectral-element code. Nek5000 makes heavy use of what are
effectively Basic Linear Algebra Subroutine (BLAS) calls, but for
very small matrices. Through autotuning and specialization, we
can achieve significant performance gains over hand-tuned libraries
(e.g., Goto, ATLAS, and ACML BLAS). Additional performance
gains are obtained from using higher-level compiler optimizations
that aggregate multiple BLAS calls. We demonstrate more than
2.2X performance gains on an Opteron over the original manually
tuned implementation, and speedups of up to 1.26X on the entire
application running on 256 nodes of the Cray XTS5 Jaguar system
at Oak Ridge.
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1. INTRODUCTION

The complexity and diversity of today’s parallel architectures
overly burden application programmers in porting and tuning their
code. At the very high end, processor utilization is notoriously low,

(©2010 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

ICS’10, June 24, 2010, Tsukuba, Ibaraki, Japan.

Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

and the high cost of wasting these precious resources motivates ap-
plication programmers to devote significant time and energy to tun-
ing their codes.

To assist the application programmer in managing this complex-
ity, researchers have devoted considerable effort in the past few
years to autotuning software that uses empirical techniques to eval-
uate a set of alternative mappings of computation kernels to an
architecture and select the mapping that obtains the best perfor-
mance [4, 31, 11, 24, 27]. This paper focuses on a particular role
for autotuning, used in conjunction with specialization for specific
classes of known input sizes. Specialization information allows
the autotuner to derive highly optimized, specialized versions of a
computation for known input sizes. These specialized versions are
then included in a customized library. At run time, the execution
environment can invoke the appropriate specialized version from
the library.

The approach presented in this paper is based on work by Ti-
wari et al. that applies compiler-based autotuning to computational
kernels, demonstrating performance sometimes comparable to that
of manually tuned codes [6, 8, 27]. Extending their approach to
tuning whole applications, we apply it to Nek5000 [1], a scal-
able spectral-element code. Nek5000 was an early science ap-
plication on Blue Gene/P at Argonne and was awarded 30,000,000
CPU-hours under INCITE in 2009 [2]. Its application areas include
nuclear reactor modeling, astrophysics, climate modeling, combus-
tion, and biofluids. The execution time of Nek5000 is dominated
by what are essentially matrix-matrix multiplies of small, rectangu-
lar matrices. These small matrices are of known sizes that remain
the same for different problem sizes and different scales. While
highly optimized BLAS libraries (vendor, ATLAS, Goto, etc.) are
available, they are tuned for large, square matrices and do not per-
form as well for the small, nonsquare matrices used in Nek5000.
Thus, specialization for small matrices is a particularly valuable op-
timization for Nek 5000, but autotuning is needed to identify the
best-performing implementation of each problem size and add it
to the library. In addition to tuning individual BLAS calls, further
performance gains are possible by aggregating multiple BLAS calls
and then applying compiler optimizations to the resulting code; au-
totuning again identifies the best optimization strategy.

This paper describes how we combine autotuning with special-
ization to optimize Nek5000. Our target machine is the Cray XT5
Jaguar at Oak Ridge National Laboratory. We used CHiLL [8,
27, 14], a loop transformation framework based on the polyhedral
model, to automatically generate specialized versions according to
user-specified optimization strategies. CHiLL provides a high-level



Figure 1: Turbulence in wire-wrapped subassemblies visual-
ized by axial velocity distributions.

script interface that allows a user or compiler to specify an opti-
mization strategy as a sequence of code transformations and param-
eters. We use this interface to describe the search space of special-
ized implementations. Using heuristics to prune the search space
of possible implementations, a set of variants generated by CHiLL
are then measured and compared, in order to derive the specialized
library of implementations.
This paper makes several contributions:

e Automation of architecture-specific specialization for Nek -
5000 using compiler tools. This process could be repeated
to tune Nek5000 for similar architectures and native com-
pilers.

e Demonstration that compiler-based autotuning and special-
ization can exceed performance gains from library-based au-
totuning through the use of higher-level optimization that ex-
ploits application context; that is, how the libraries are in-
voked and the expected data sets.

e An optimization strategy that can be generalized for other ap-
plications that use matrix-matrix multiply on irregular-sized
matrices for which BLAS libraries do not yield high perfor-
mance or for related small, matrix operations for architec-
tures supporting multimedia extensions such as SSE3. Other
libraries, such as the widely used Portable, Extensible Toolkit
for Scientific Computation (PETSc) library, would similarly
benefit from automatic tuning specialized to application con-
text.

Shin et al. [26] explored how specializing matrix multiply for
small matrices could outperform hand-tuned libraries. This pa-
per incorporates a detailed analyses based on dynamic instruction
count information to capture the reasons behind the performance
differences. More important, we have integrated a specialized li-
brary into the Nek5000 application for a scaled-up data set size
(G6a) and demonstrated up to 26% performance gains on 256 nodes
of the Jaguar (Cray XTS5) system at Oak Ridge, gains that are
largely preserved as we increase the number of cores per node. Op-
timization at a higher level, where several of these matrix-matrix
multiplications are combined and optimized together, yields an ad-
ditional almost 3% performance gain.

2. NEKS000

Nek5000 is a scalable code for simulating fluid flow, heat trans-
fer, and magnetohydrodynamics as well as electromagnetics (in
a separate code, NekCEM). The code is based on the spectral-
element method (SEM) [21], a hybrid of spectral and finite-element
methods. Spectral discretizations based on Nth-order tensor prod-
uct polynomial expansions in Q := [—1,1]%, d=2 or 3, provide
rapid convergence (high accuracy per grid point) at low cost. In
particular, operators that are nominally full with O(N°®) nonzeros

can be applied in only O(N*) work with only O(N?*) memory
accesses. Moreover, the work can be cast as dense matrix-matrix
products. The SEM extends the geometric flexibility of spectral
methods in two ways. First, it uses Lagrangian interpolants based
on Gauss or Gauss-Lobatto quadrature points that, in addition to
ensuring stability, provide sufficiently accurate quadrature to allow
pointwise evaluation of variable-coefficient integrands. Integrands
involving Jacobians and metric tensors in deformed domains are
thus evaluated with only N® storage and work complexity. In ad-
dition, the SEM allows multiple domains (deformable brick ele-
ments) to be coupled together in the traditional manner of finite
elements to realize complex domain shapes. A recent example is
the wire-wrapped rod-bundle flow of Figure 1, comprising 560,000
elements of order N = 8 [10].

The core computation in Nek5000 calls for repeated function
evaluations either for explicit substeps of the time advance or for
iterations in implicit substeps. Within each element, each eval-
uation entails matrix-vector products of the form C' @ B ® Au.
Specifically, we require sums of the following form.

N
Vijk = zAipUpjiw
p=1
N
vijk = Chpllip,

p=1

N

Vijk = szpuipky
p=1

i,5,k e {1,..,N}?

The first product can be cast as a matrix multiply if u;;x is viewed
as an array having N2 columns of length N. Similarly, the last
product can be expressed as V = UC”. The middle sum is ex-
pressed as a sequence of small products, u(:, :, k)BT, k=1,...,
N [9]. Because the approximation order of the pressure and ve-
locity spaces differ by 2, the above sums also appear with permu-
tations in which index ranges may be replaced by M = N — 2.
Thus, Nek5000 requires numerous calls to small, dense matrix
multiplies of known sizes over a limited range of values.

In this paper, we use Nek5000 to illustrate our autotuning pro-
cess and associated tools. We investigate the performance impact of
autotuning and specialization for two Nek 5000 data sets: Helix2,
which is helical pipe flow, similar to that found in certain vascular
flows, and G6 a, which is turbulent flow in a channel that is partially
blocked by a cylinder.

3. COMPILER TECHNOLOGY: AUTOTUN-
ING AND SPECIALIZATION

The methodology for optimizing Nek 5000 consists of three steps.
We first use CHiLL to generate code versions specialized for spe-
cific matrix sizes. An automated empirical search then finds the
best optimization parameters, using a set of compiler heuristics to
keep the search space manageable. Finally, we create a library of
specialized code versions and replace the original computation with
calls to the library.

To put this approach in context, we have automated much of what
is difficult in manual tuning — correct code generation, empirical
measurements to explore a large set of implementations, pruning to
avoid searching unprofitable implementations — but have relied on
user involvement for some of the steps, particularly in describing
the transformation strategies to be considered. This approach can
evolve toward increased automation as tool technologies improve,
but the interfaces will also always leave the door open for applica-
tion developers to have control over optimization.

The tools described in this section, highlighted in Figure 2, are
part of an autotuning workflow described elsewhere [19, 14]. This



'performance
data

application

kernel

1
AUTOTUNING + SPECIALIZATION

specialization
input

Figure 2: Overview of our approach.

specialized
code
variants

best
specialized
code

variants

transformations
& code variant
generation

e |

code ﬂu 1
1

1

empirical search

workflow comprises several components. Code triage identifies
computations that have optimization opportunities and performance
issues. The programmer uses profiling or performance tools that
correlate performance metrics with source code to identify compu-
tations to be tuned. Instrumentation (automatic or manual) might
be used to collect performance-sensitive data, such as problem sizes,
during execution of the application. Code outlining derives a stan-
dalone kernel for the key computations discovered in the triage pro-
cess, along with the kernel’s input data and parameter values col-
lected during application runs. Once the bottlenecks of an applica-
tion are identified and outlined into kernels, the extracted kernels
need to be specifically tuned for the target architecture (autotuning
and code generation).

3.1 Result of Code Triage for Nek5000

For Nek5000 we used PAPI to collect hardware performance
metrics and observed that, with the He1ix2 input, the applica-
tion spends approximately 60% of the time on a particular func-
tion, mxm44_ 0. This function is a manually tuned implementation
of matrix multiply, which yields overall good performance over a
wide range of architectures. The main loop nest is unrolled by 4
for each of the i and j loops of the original loop nest shown in
Figure 4(a). If either M or N is not a multiple of 4, clean-up loops
execute the residual iterations.

We would like to improve on the manual optimizations of mxm4 4
_ 0 by automatically generating a library for the matrix sizes used
for Helix2 and G6a problems. To investigate the frequency of
each array size, we instrumented mxm44_0 so that it captures the
number of calls for each matrix size across all of its invocations
for each of the two problems. We use these call frequencies to se-
lect sizes for specialization and optimize the conditional checks for
matrix size, as described in Section 3.5.

3.2 Optimization Strategy

Since the key computational kernel of Nek 5000 is matrix-matrix
multiply, why is it not sufficient to use standard BLAS libraries for
the target architecture? This point was the focus of Shin et al.’s
paper [26], which compared various hand-tuned BLAS libraries
to those generated by their compiler. For large, square matrices,
such as 1024x1024, the ACML (native), ATLAS, and the Goto
BLAS libraries all perform well, above 70% of peak performance.
They incorporate aggressive memory hierarchy optimizations such

as data copy, tiling, and prefetching to reduce memory traffic and
hide memory latency. Additional code transformations improve
instruction-level parallelism (ILP). Several examples in the liter-
ature describe this general approach [4, 31, 7, 12, 33].

If we look closer at matrices of size 10 or smaller, however,
those same BLAS libraries perform below 25% of peak perfor-
mance. Since these matrices fit within even small L1 caches, the
focus of optimization should be on managing registers, exploiting
ILP in its various forms, and reducing loop overhead. For these
purposes, we can use loop permutation and aggressive loop un-
rolling for all loops in a nest. To the backend compiler, unrolling
exposes opportunities for instruction scheduling, scalar replace-
ment, and eliminating redundant computations. Loop permutation
may enable the backend compiler to generate more efficient single-
instruction multiple-data (SIMD) instructions by bringing a loop
with unit stride access in memory to the innermost position, as re-
quired for utilization of multimedia-extension instruction set archi-
tectures.

Thus, in our initial set of experiments, we generate code using
a combination of loop permutation and unroll-and-jam. In some
cases, where the matrices are small, we obtain the best performance
by coming close to fully unrolling all the three loops in the nest.
When applied too aggressively, however, loop unrolling can gener-
ate code that exceeds the instruction cache or register file capacity.
Therefore, we use autotuning to identify the unroll factors that nav-
igate the tradeoff between increased ILP and exceeding capacity
of the instruction cache and registers. We rely on the native back-
end compiler for the architecture to identify the SIMD instructions,
and simply expose code to the backend that will be optimized most
effectively.

Even better performance can be obtained by aggregating multi-
ple calls to matrix-matrix multiply and optimizing the code to ex-
ploit reuse in registers and cache, as explained in Section 2. Being
compiler-based, our approach can optimize the middle loop that
contains multiple calls to matrix-matrix multiply. To do this, we
inline the matrix-multiply function into the loop as shown in Fig-
ure 3. Then, the inlined loop nest is used as an input to Shin et al.’s
autotuning framework.

do iz=1,10
do i=1,10
do j=1,10
do iz=1,10 C(i,j,iz) = 0.0d0
call mxm(A(1,1,iz),10,B, \ do 1=1,10
10,C(1,1,iz),10) C(i,j,iz) = C(i,j,iz) + A(i,Liz)*B(l,j)
enddo enddo
enddo
(a) original enddo
enddo

(b) inlined
Figure 3: Function inlining for higher-level tuning.

3.3 Transformation Using CHiLL

One of the key challenges that a programmer faces during the
tuning process is to try many different transformation strategies in
order to find the best solution. This is an extremely slow and error-
prone process. CHIiLL provides a script interface to the program-
mer that can be used to apply complex loop transformation strate-
gies on a loop nest by composing a series of loop transformations
[6, 8, 27]. CHIiLL’s polyhedral framework provides a mathematical
treatment of loop iteration spaces and array accesses, and transfor-
mation algorithms manipulate the polyhedral representations. The



transformations supported include data copying, tiling, index set
splitting, loop permutation, unroll-and-jam, fission, fusion, and any
unimodular transformation.

To use CHILL for optimizing small matrix-multiply computa-
tions, consider the code in Figure 4(a). The matrix-multiply code is
imperfectly nested because the C array is initialized to zero before
multiplication. To permute the loop in j,k,i order, the programmer
needs to specify only one permute transformation (Figure 4(c));
CHILL generates the correct result, as shown in Figure 4(e). Fur-
ther, the unroll command of CHiLL performs unroll-and-jam if the
unrolled loop is an outer loop and if inner loops can be fused to-
gether legally. Figure 4(g) shows the result of all three unroll sizes
ul, u2, and u3 set to 2. Such flexibility greatly helps programmers
since they can now focus their effort on how the transformation
affects the locality and the performance, instead of the details of
generating the correct code.

For the purposes of specialization, we have added to CHIiLL the
known command, which allows the programmer to express known
loop bounds. Within CHILL, known adds additional conditions to
the iteration spaces extracted from the original code. These condi-
tions subsequently affect the quality of the generated code, permit-
ting different specialized versions and determining, for example,
whether unroll factors evenly divide loop bounds, so that the com-
piler can avoid generating cleanup code.

Figures 4(b), (c), and (d) show three sample CHiLL scripts used
to generate three different loop orders in (a) (actual output is sim-
ilar but with loop upper bounds fixed at 10), (e), and (f), respec-
tively. For brevity, we show the simplest versions where all unroll
amounts are 1. Loops are numbered starting from 1 for the outer-
most loop and increase as we move inward. In permute, the loop
numbers are used to indicate the loop order after the permutation.
The meaning of unroll(stmt,loop,factor) is to unroll the individ-
ual statement stmt (numbered from 0) within loop by unroll factor
factor (shown as unbound variables). The three scripts shown in
Figures 4(b), (c), and (d) differ in the number of unroll com-
mands; this difference is necessary because the number of loops
are different after loop permutation as shown in (a), (e), and (f)
depending on the loop order given. These scripts plus additional
ones for different loop orders combined with ten different known
statements were used to generate the specialized BLAS library for
Nek5000.

These CHILL scripts, as well as the ones for higher-level op-
timization, are automatically generated. Given a loop order and
an unroll factor for each loop, a permute command is generated
with the loop order, and then an unroll command is generated
for each loop for statement s1 in Figure 4(a). If all loops in which
statement s0 is not enclosed are inside all loops in which it is en-
closed, as in the loop order of 123, no other unroll commands
are necessary. Otherwise, an unroll command should be gener-
ated for each loop in which statement s1 is enclosed but is itself
enclosed within the loop in which statement s1 is not enclosed.
For example, i and j-loops are such loops when the loop order is
312, that is, ki j as in Figure 4(d). Since statement s 0 is not inside
the k-loop but both i and j-loops are within k-loop after loop per-
mutation, separate unroll commands are generated for statement
s0 for each of i and j-loop. This same approach can be applied
to the higher-level loop nest in Figure 3(b). The only difference is
that it is a 4-deep loop nest, and so four loops are considered for
both the permute and unroll transformations.

3.4 Autotuning: Pruning the Search Space

With all the transformation scripts ready, the next step is to search
for the best optimization parameters. To this end, we invoke CHiLL,

do 10, i=1,.M
do 20, j=1,N
sO: c(i,j) = 0.0d0
do 30, k=1,K
sl: c(i,j) = c(i,)) + a(i,k)*b(k,j)
30 continue

20  continue
10 continue

(a) original.f

permute([3,1,2])
permute([2,3,1]) known(M=N=K=10)
permute([1,2,3]) known(M=N=K=10) unroll(1,1,ul)
known(M=N=K=10) unroll(1,1,ul) unroll(1,2,u2)
unroll(1,1,ul) unroll(1,2,u2) unroll(1,3,u3)
unroll(1,2,u2) unroll(1,3,u3) unroll(0,2,u2)
unroll(1,3,u3) unroll(0,3,u3) unroll(0,3,u3)

(b) Loop order i,j,k  (c) Loop order j.,k,i (d) Loop order k,i,j

do2,t4=1,10,1
do4,t6=1,10,1
do2,t2=1,10,1 c(t4, t6) = 0.0d0
do4,t6=1,10,1 4 continue
c(t6, t2) = 0.0d0 2 continue
4 continue do6,t2=1,10,1
do6,t4=1,10,1 do8,t4=1,10,1
do8,t6=1,10, 1 do 10,t6 =1, 10, 1
c(t6,t2)=c(t6,t2)+ \ c(t4,t6)=c(t4,t6)+ \

a(t6,t4)*b(t4,t2) a(t4,t2)*b(12,t6)
8 continue 10 continue
6  continue 8  continue
2 continue 6 continue

(e) After loop permutation in (c) () After loop permutation in (d)

do2,2=1,9,2
do4,t6=1,9,2
c(t6, t2) = 0.0d0
c(t6, t2+1,) = 0.0d0
c(t6+1, t2) = 0.0d0
c(t6+1, t2+1) = 0.0d0
4 continue
do6,t4=1,9,2
do8,t6=1,9,2
c(t6, t2) = ¢(t6, t2) + a(t6, t4) * b(t4, t2)
c(t6, 12+1) = c(t6, 12+1) + a(t6, t4) * b(t4, t2+1)
c(t6, t2) = c(t6, t2) + a(t6, t4+1) * b(td+1, t2)
c(t6, 12+1) = c(t6, 12+1) + a(t6, t4+1) * b(td+1, t2+1)
c(to+1, t2) = c(t6+1, t2) + a(t6+1, t4) * b(t4, t2)
c(to+1, t2+1) = c(t6+1, 2+1) + a(t6+1, t4) * b(t4, t2+1)
c(t6+1, 2) = c(t6+1, 12) + a(t6+1, t4+1) * b(t4+1, t2)
c(t6+1,2+1) = c(t6+1,12+1)+a(t6+1,t4+1)*b(t4+1,t2+1)
8 continue
6 continue
2 continue

(g) A complete example of script in (c) with ul=u2=u3=2

Figure 4: Example of CHIiLL scripts and the generated codes.



in order to generate actual code variants and measure their perfor-
mance on the target machine. For some of the smaller matrix sizes,
the search space is sufficiently small that exhaustive search is fea-
sible; but for the larger matrices, we must develop heuristics to
prune the search space to complete the experiments. We extract the
heuristics from the exhaustive search results of small matrices and
use them in pruning the space of larger matrices. In this section,
we briefly describe the pruning heuristics we used; a more detailed
presentation is in [26].
Heuristic 1: Loop order. Loop orders that lead to lower-performance
code variants are pruned from the search.
Heuristic 2: Instruction cache. Unroll amount for all three loops is
limited by a constant C' that is likely to fill the L1 instruction cache.
Heuristic 3: Unit stride on one loop. Unroll factor is restricted to
those tuples (Up,, Ug, U,), where at least one of U,,,, Uy, or Uy, is
1, to achieve spatial locality within a SIMD register.
Heuristic 4: Unroll factor divides iteration space evenly. When a
loop of iteration count m is unrolled by a factor of u, the last “m
mod u” iterations must be executed in a clean-up loop. The cost
of executing the clean-up loop is significant when the matrices are
small.

For the four-loop loop nest of Figure 3(b), exhaustive search is
not possible even for the smallest input size. We use the last three
heuristics, but now for a four-dimensional loop nest.

3.5 Building the Library

After each code variant is generated, it is compiled and linked
with the driver that measures and records the performance. When
the evaluation is complete for the generated code variants, the best-
performing variant is selected for each matrix size, and these are
aggregated into a library. The library includes a wrapper code that
takes the same number of arguments and has the same name as the
existing default implementation to provide the same interface to the
rest of Nek5000, as in Figure 5. A specialized code is invoked if
one is available that matches the three size parameters; otherwise,
the original, manually tuned version is invoked.

To keep conditional check overhead reasonably low, we follow
the algorithm shown in Figure 5(a). The algorithm takes three argu-
ments: a set of input sizes (InSet), the number of dimensions of
the elements (d), and a basic block (BB1ock) in which codes are
inserted. Each element of InSet is a vector representing an in-
put size. For matrix multiplies, for example, an element of InSet
is (10,10,10) for M, K, and N dimensions of the three arrays. We
assume that each input size is associated with the call frequency
we obtain by instrumenting Nek5000. We first pick from InSet
an element S that is called most frequently. Then, we choose a
dimension of S whose value is identical for the largest number of
elements in InSet. Thus, we divide InSet into two disjoint sub-
sets: one with the elements that have the same value for the chosen
dimension and the other with the remaining elements. With this
partitioning, we reduce the problem into two smaller problems. For
the chosen subset, we generate an i f-statement that checks for the
chosen dimension with the common value of the set, and thus only
d-1 dimensions remain to be checked. The algorithm recursively
calls itself with d-1 for this subset, and once again for the remain-
ing input sizes. For example, Figure 5(b) shows the wrapper code
of the matrix multiply library for the G6a problem, which calls 17
specialized routines.

4. EXPERIMENTS

We tuned the library on a 2.5 GHz AMD Opteron Phenom work-
station that has four cores. The machine has separate 64 KB L1
instruction and data caches, an integrated 512 KB L2 cache, 2

Algorithm WrapGen(InSet: set of vectors representing input sizes,
d: number of dimensions of a vector element in
InSet, BBlock: basic block to generate code)

1. S «— Choose from InSet an element with the largest number of calls

2. ThenSet, 7 < Find a subset Sub of InSet and 7 such that all elements

of Sub has the same value as the ¢-the dimension value of

S and |Sub| is the largest among such subsets
3. IfStmt « Generate an if-statement in BB1ock checking for the i-th
dimension value
4. RDimSet « Delete i-th dimension from all elements of ThenSet
WrapGen(RDimSet, d — 1, then-block of IfStmt)
5. WrapGen(InSet — ThenSet, d, else-block of TfStmt)

(a) Algorithm
(1) mxm(a, m, b, k, ¢, n){

(2) if (all a, b and c are aligned to the SIMD register width){
3) if (k == 10){

() if (m == 10){

5) if (n == 10){ m10_10_10(a,b,c); return;}

6) if (n == 100){ m10_10_100(a,b,c); return;}}

@) else if (n == 2){

®) if (m == 2){ m2_10_2(a,b,c); return;}

© if (m == 4){ m4_10_2(a,b,c); return;}}

(10) else if (m == 100 && n == 10){m100_10_10(a,b,c); return;}
an else if (n == 16){

12) if (m == 16){ m16_10_16(a,b,c); return;}

(13) if (m == 256){ m256_10_16(a,b,c); return;} }

(14) else if (m == 16 && n ==100){m16_10_100(a,b,c); return;} }

(15)  elseif (k == 2){
(16) if (n == 10){

a7 if (m == 10){ m10_2_10(a,b,c); return;}
(18) if (m == 100){ m100_2_10(a,b,c); return;} }
19) else if (m == 10 && n == 88){m10_2_88(a,b,c); return;}}

(20) elseif (k == 16){
2n if (m == 16){

22) if (n == 16){ m16_16_16(a,b,c); return;}

(23) if (n == 256){ m16_16_256(a,b,c); return;}}

(24) if (m == 10){

(25) if (n == 10){ m10_16_10(a,b,c); return;}

(26) if (n == 256){ m10_16_256(a,b,c); return;} }

27) else if (m == 256 && n == 16){m256_16_16(a,b,c); return;}
(28) else if (m == 100 && n == 10){m100_16_10(a,b,c); return;} } }

(29) mxm44_0(a, m, b, k, ¢, n);}

(b) Example wrapper for matrix multiplies of G6a

Figure 5: Wrapper code generation for specialized routines.
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Figure 7: Performance of the matrix multiply library for 17 input sizes chosen for G6a.

MB L3 cache, and 6 GB of memory. Since it runs 64-bit Linux
(Ubuntu_8.04-x86_64), all 16 XMM registers are available
for use. In order to allow an access to hardware performance coun-
ters, the Linux kernel (version 2.6.25.4) is patched with perfctr
distributed in PAPI version 3.6.0 [5]. CHiLL version 0.1.5 [8] and
the Intel compiler version 10.1 [17] are used to transform and com-
pile the code variants. We measured the whole Nek5000 perfor-
mance on Jaguar at Oak Ridge National Laboratory, a Cray XT5
supercomputer with new six-core Opteron Istanbul processors. The
architecture is similar to Phenom, but there are 6 cores per socket,
2 sockets per node, 16 GB of memory per node, and each core runs
at 2.6 GHz. The compiler we use is PGI pgcc and pg£ 90 version
9.0-4, which is the default compiler on the machine.

Figure 6 shows a block diagram of the experimental flow. Given
input matrix sizes for which specialization is desired, a matrix-
multiplication kernel (vanilla. f), shown in Figure 4(a), and
a driver (driver.c) are used to measure and collect the per-
formance of code variants. The driver measures the number of
clock cycles using PAPI performance counter PAPI_TOT_CYC.
To obtain accurate measurements, we execute a variant 500 times
per measurement for matrix multiply and 10 times per measure-
ment for the higher-level kernel. We collect 100 such measure-
ments and record the minimum as the final performance of the
variant. We produce as output a high-performance library of spe-
cialized matrix-multiplication routines. Parameters m, k, and n
are used in defining matrix sizes as in C'(m,n) = A(m,k) x
B(k,n). Code variants are generated in Fortran, but the driver
is a C function. In order to generate aligned SIMD instructions,
an__attribute__ ((aligned (16))) qualifieris added to
array declarations, and the interprocedural optimization feature is
used with —fast for ifort and -03 -ipo for icc. Currently,
all components inside the dotted box of Figure 6 are automated.
Also, automated parallel driver can invoke multiple copies of code
variant generator and evaluator to exploit task parallelism when
multiple cores are available.

We optimize Nek 5000 for the He11x2 and G6 a input data sets.
We chose the fastest variant for each input size to create two li-
braries, one for Helix2 and another for G6a. Table 1 summa-
rizes the number of input sizes for two versions for each of the two
problems. At first glance, 18 specialized routines might seem too
many; but because of the call frequency distribution and the way
we group and order the conditional checks, at most 5 additional

checks are needed beyond the required checks for the three values.
Furthermore, this worst-case overhead occurs for less than 1% of
the calls because the conditional checks are ordered in decreasing
order of the call frequencies as described in Section 3.5. The tuned
library covers close to 99% of computation originally performed in
mxm44_ 0.

Table 1: Number of specialized routines for tuned libraries.

| Libraries | Helix2 | G6a

Autotuned matrix multiply 18 17

Autotuned matrix multiply | 15 (matrix multiply) | 12 (matrix multiply)
+ higher-level kernels 6 (higher-level) 6 (higher-level)

4.1 Performance of Matrix-Multiply Kernels

What is the impact of using the specialized libraries as compared
to simply using highly tuned BLAS libraries for the Opteron? In
fact, the use of specialization, autotuning, and optimizations fo-
cused on small matrices yields significant gains over even the best
manually tuned libraries. Shin et al. compared the performance
difference between autotuned, specialized libraries and hand-tuned
BLAS libraries [26]. The manually tuned libraries included the
native ACML BLAS (version 4.1.0), Goto BLAS (goto_barcelona-
r1.26), and ATLAS (version 3.8.2 with the following architectural
default: AMD64K10h64SSE3). Each performs less than 30% of
peak for the smallest matrices, which is more than 3X faster than
using the native compiler on a naive implementation. The manu-
ally tuned baseline, part of Nek5000, is a little slower than the
hand-tuned libraries, performing at roughly 23% of peak across all
sizes.

In this paper, we go beyond the prior work of Shin et al. to com-
pare the results of our automatically generated library to the base-
line, which is near that of the manually tuned libraries. As shown in
Figure 7(a), our automatically generated library code yields perfor-
mance up to 77% of peak, more than a 2.2X improvement over the
manually tuned code. To investigate the source of the speedups,
we used PAPI to gather dynamic measurements of total number
of instructions, branch instructions (PAPI_BR_INS), and SIMD
instructions (PAPI_VEC_INS). Figure 7(b) shows the number of
floating-point operations per instruction. Since AMD Opteron pro-
cessors can compute at most two double-precision floating-point
operations per instruction, the maximum value is 2. The shapes of
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Figure 8: Normalized instruction breakdown for Figure 7.

the two graphs of Figure 7 are similar: the y-axis of (b) goes up to
1.6, which mirrors 80% of peak in the y-axis of (a). This similar-
ity suggests that the key performance difference is the number of
instructions executed. Figures 8(a) and 8(b) show a more detailed
analysis of the breakdown of instructions, normalized by the num-
ber of effective floating-point operations. Compared to the base-
line, on average the tuned kernels have 6.5X fewer branch instruc-
tions, because of aggressive loop unrolling. Even though branches
make up a small percentage of the total instructions, they can be
costly because of small loop trip counts interfering with branch
prediction. The specialized library code has 2.4X fewer SIMD in-
structions. However, the SIMD instructions make up a higher per-
centage of instructions in the specialized library, more than 80%
of all instructions. Note that some instructions using SIMD func-
tional units such as mulsd are counted as SIMD instructions, but
they compute a single value. For example, the baseline version
has many mulsd’s that compute a single value, whereas the tuned
version has only mulpd’s that compute two values. This result
shows that efficient SIMD code generation is a deciding factor for
achieving high performance in dense matrix multiply of small ma-
trices. Resource stalls (PAPI_RES_STL) per instruction were not
significantly different for the two versions. All other instructions
are reduced by 20X, because of redundancy elimination and more
effective use of SIMD instructions.

4.2 Performance of Higher-Level Kernels

Figure 9 shows the additional performance gain from the tuned
versions of the higher-level kernels, shown in Figure 3(b), for six
input sizes of G6a on a Phenom processor (the first three bars) and
on a Cray XTS5 supercomputer (the last bar). The higher-level ker-
nels optimize a collection of calls to matrix multiply. The x-axis of
the graph represents different matrix sizes corresponding to the four
loop bounds of iz, i, 1 and j-loops; the y-axis captures percent-
age of machine’s peak. For each matrix size, the first bar provides
the performance of the manually tuned baseline mxm44_0, be-
tween 11% and 26% of peak. The second bar, labeled Aut otuned
matrix multiply,represents the optimized matrix-multiply li-
brary from the previous section (without higher-level kernels), with
a performance between 28% and 66% of peak.

The third bar, labeled Autotuned higher-level, repre-
sents the higher-level kernels, where we tune the outer iz-loop
together with the dense matrix-multiply loop nest. The library

Manually tuned matrix multiply
Autotuned matrix multiply
Autotuned higher-level
Autotuned higher-level (XT5)
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Figure 9: Performance of the tuned higher-level kernel of Fig-
ure 3(b).

achieves a much higher performance, between 56% and 84% of
peak.

As preparation for using the tuned library on a large parallel ma-
chine, the binary library was transferred to Jaguar at Oak Ridge
National Laboratory. (Note that it is not feasible to tune the library
on the Oak Ridge system because of usage restrictions on login
nodes and lack of a compiler on compute nodes.) We compare per-
formance to see whether the binary library tuned on the Phenom
platform will still achieve high performance on Jaguar. We dis-
cover that the results on the Cray XTS5 are comparable, making the
use of this tuned library performance-portable across these related
but different platforms.

4.3 Performance of Nek5000 on Jaguar

In this section, we present the performance gains of the whole
Nek5000 achieved by the autotuned libraries for a small data set
Helix2 and a larger data set G6a. We compare four versions
of the application representing different implementations of matrix
multiply: (1) manually tuned mxm44_0; (2) Cray scientific library
10.4.0 for Istanbul, which uses the Goto BLAS (CSL/Goto); (3)
the tuned library of specialized matrix multiplies; and (4) the tuned
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library that also includes higher-level kernels. For this experiment,
we used the t ime tool in Linux to measure the wall clock time on
the Jaguar supercomputer. We ran the whole program 15 times
for 300 time steps for Helix2 and 1,000 time steps for G6a and
took the minimum run time, which reduces the effects of large I/O
performance fluctuations.

Figures 10(a) and 10(b) show the result of this experiment on
Helix2 for 1 to 4 processors and G6a for 32 to 256 processors,
respectively. The range of number of processors is problem depen-
dent: G6a cannot run on fewer than 32 processors, while He1ix2
is too small to scale beyond 4 processors. For this initial experi-
ment, we used a single core per Istanbul node, so the number of
cores corresponds to number of nodes. The speedups of the graph
are computed with respect to the baseline version that runs on a
single processor for He1ix2 and on 32 processors for G6a. In
general, as the number of processors is doubled, the performance
improves by a factor of 1.7 to 2. When compared with the manu-
ally tuned versions running on the same number of processors, the
versions using the CSL/Goto library speed up by 6% and 9%, and
the versions using the autotuned matrix multiply kernels by 32% to
36% for Helix2 and around 23% for G6a. When the autotuned
higher-level kernels are used in addition, we gain an additional 2%;
and the overall gains over the manually tuned versions on the same
number of processors are between 35% and 38% for Helix2 and
up to 26% for Goa.

Now we examine how performance gains are impacted by using
multiple cores per node. Figure 11 presents performance of G6a on
32 nodes, using between 1 and 12 cores per node, as speedup over
the manually tuned baseline running on 32 nodes. Performance in-
creases until 8 cores per node, that is, a total of 256 cores, before
it drops a little. We believe the drop from 8 to 12 cores per node is
due to memory-related issues, such as memory latency, bandwidth
saturation, or competition for shared L3 cache, or it is related to
the shared-memory implementation of MPI. Note that it is not due
to lack of available parallelism, as the 256-node single-core results
from Figure 10(b) show significantly better performance (46% bet-
ter) than the equivalent computation decomposition of 32-node 8-
core results. Nevertheless, for the same number of cores per node,
the autotuned version is always better than the manually tuned ver-
sion and is still roughly 12% faster for 8 cores per node.

5. RELATED WORK

Library-based autotuning has been successful for dense and sparse
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Figure 11: Speedups of Nek5000 by varying the number of
cores per node.

linear algebra [4, 31, 30] and signal processing [11, 24, 29]. OSKI
[30] tunes sparse matrix computation automatically. These library-
based systems are able to autotune for a particular hardware, but
they tune only a fixed set of library kernels and are not able to tune
arbitrary computations.

Compiler-based autotuning systems and code transformation tools
have also been actively studied recently. Chen et al. [7] combine
compiler models and heuristics with guided empirical evaluations
to take advantage of their complementary strengths. Tiwari et al.
[27] use the Nelder-Mead algorithm in their autotuning system that
combines Active Harmony and CHiLL. Hartono et al. [15] use
annotations to describe performance improving code transforma-
tions. POET is a scripting language for parameterizing complex
code transformations [32]. Pouchet et al. [22, 23] embed legality of
affine transformations as linear constraints, thereby combining the
code transformation steps and the legality checking step. Kulkani
et al. [18] describe VISTA, which allows selecting the order and
scope of optimization phases in compiler.

Herrero and Navarro [16] describe specializing matrix multipli-
cation for small matrices. However, their code variants were gen-
erated manually. For tuning Nek 5000, the most closely related is
Paul Fischer et al.’s work on scaling Nek 5000 on Blue Gene [10]



and ASCI Red [28]. Our approach improves single-node perfor-
mance based on compiler technology. Gunnels et al. [13] provide
strategies for blocking matrices for matrix multiplication at each
level of hierarchical memories. However, these do not apply to the
small matrices we encounter in Nek5000. Barthou et al. [3] reduce
the search space by separating optimizations for in-cache compu-
tation kernels from those for memory hierarchy. Similar to our
approach, they obtain high-performance kernels from the vendor
compiler by providing it with simplified kernels. To generate code
variants, they use X Language controlled by user-provided prag-
mas. Shin et al. [26] describe a compiler-based technique that com-
bines specialization with autotuning for matrix multiply of small,
rectangular matrices. In this paper, we demonstrate that the same
autotuning strategy can be used to tune higher-level kernels that
are application specific. Further, we automate the strategy in an
autotuning system that can exploit multiple cores in a system, and
we demonstrate that single-node performance gains can improve
scaled-up supercomputer performance.

As a design choice, we could have generated SIMD instructions
directly from our tool chain using SIMD intrinsics [24, 20, 25].
This would allow us to have finer control over SIMD code gener-
ation. Instead, we have the backend compiler to perform SIMD
parallelization by providing it with dependence and alignment in-
formation. With this choice, our tool chain became simpler, faster,
and depends less on any particular architecture, still achieving up
to 84% of machine’s peak.

6. CONCLUSION

This paper described an autotuning and specialization method-
ology applied to Nek5000. The tuning process involves identi-
fying data set sizes for the core computation (matrix multiply of
small matrices) and providing a set of parameterized optimization
scripts to the CHILL polyhedral framework that generate special-
ized code. A set of heuristics prune the space of parameter values
and variants as part of autotuning the implementation. We show
speedups of more than 2.2X on the core computation as compared
to already manually tuned code, and also much better performance
than standard BLAS libraries. Performance improvements for the
full Nek 5000 application are 38% on 4 nodes for He1ix2 and up
to 26% on 256 nodes for G6a. These performance gains from the
tuned library are significant — increased efficiency of a production
code running on a supercomputer increases the precision of a re-
sult that can be run in the same time, or increases the throughput of
Jaguar, an important shared national resource.

Beyond tuning Nek 5000, this paper shows an approach to tun-
ing code that is repeatable and permits the application to maintain
high-level, architecture-independent code. We can view the CHiLL
script, search-space pruning heuristics and generated library as doc-
umentation of the tuning process for a particular platform and na-
tive compiler. Over time, as this code is tuned for multiple archi-
tectures, this prior tuning work can potentially be reused, thus sys-
tematically evolving application code for new architectures from
machine-independent code.
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